Your IP : 172.28.240.42


Current Path : /var/www/html/clients/amz.e-nk.ru/gepv3/index/
Upload File :
Current File : /var/www/html/clients/amz.e-nk.ru/gepv3/index/lstm-units.php

<!DOCTYPE html>
<html class="no-js" lang="en">
<head>

  
  <meta charset="UTF-8">

  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">

  

  
  <title></title>
  <meta name="description" content="">
<!-- Inlined critical CSS -->
  
  
  <style>@font-face{font-weight:400;font-family:Roboto;font-style:normal;src:url(/t/spc/fonts/) format("woff2"),url(/t/spc/fonts/) format("woff");font-display:swap;unicode-range:U+000-5FF}@font-face{font-weight:400;font-family:Roboto;font-style:italic;src:url(/t/spc/fonts/) format("woff2"),url(/t/spc/fonts/) format("woff");font-display:swap;unicode-range:U+000-5FF}@font-face{font-weight:500;font-family:Roboto;font-style:normal;src:url(/t/spc/fonts/) format("woff2"),url(/t/spc/fonts/) format("woff");font-display:swap;unicode-range:U+000-5FF}@font-face{font-weight:700;font-family:Roboto;font-style:normal;src:url(/t/spc/fonts/) format("woff2"),url(/t/spc/fonts/) format("woff");font-display:swap;unicode-range:U+000-5FF}*,::after,::before{-webkit-box-sizing:border-box;box-sizing:border-box}body,html{height:100%}body{display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-orient:vertical;-webkit-box-direction:normal;-ms-flex-direction:column;flex-direction:column;width:100%;min-width:320px;height:100vh;margin:0 auto;font-weight:400;font-size:18px;line-height:1.5;font-family:Roboto,sans-serif;color:#132331}ol,ul{margin:0;padding:0}.button{display:inline-block;color:#fff;text-decoration:none;white-space:nowrap;border:2px solid #ff7a00;border-radius:92px;-webkit-transition:background .2s ease-out;transition:background .2s ease-out}.button:focus,.button:hover{color:#fff;text-decoration:none;border:2px solid #f89f4d}.button--primary{padding:7px 45px;background:0 0}.button--secondary{padding:10px 80px;font-size:20px;line-height:36px;background:#ff7a00}.button--secondary:focus,.button--secondary:hover{background:#f89f4d}.button--chat{width:86px;height:82px;margin:0 0 15px;background-color:transparent;background-image:url(/t/spc/img/);background-size:100% auto;border:none;border-radius:0;outline:0}.button--chat:focus,.button--chat:hover{border:none;opacity:.7}.button--add{padding:20px 77px;font-weight:700;color:#132331;text-transform:capitalize}.button--add:focus,.button--add:hover{color:rgba(19,35,49,.7)}.wrapper{position:relative;display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-flex:1;-ms-flex:1 0 auto;flex:1 0 auto;-webkit-box-orient:vertical;-webkit-box-direction:normal;-ms-flex-direction:column;flex-direction:column;min-height:100vh;min-height:calc(100 * var(--vh,1vh));overflow-x:hidden}.header{position:absolute;top:0;right:0;left:0;z-index:999;min-width:320px;padding:30px 0;background-color:#132331;-webkit-transition:height .3s ease-out,background .3s ease-out;transition:height .3s ease-out,background .3s ease-out}.header .container{position:relative;display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-align:center;-ms-flex-align:center;align-items:center;height:100%}.header .navbar-toggle{position:relative;margin:0 0 0 auto;padding:0;background:0 0;border:none;border-radius:0;width:30px;height:20px}.header .navbar-toggle::after,.header .navbar-toggle::before{content:"";position:absolute}.header .navbar-toggle::before{top:8px;opacity:1}.header .navbar-toggle::after{top:50%;left:50%;-webkit-transform:translate(-50%,-50%);transform:translate(-50%,-50%);width:44px;height:44px}.header .navbar-toggle span{position:absolute;-webkit-transform-origin:right;transform-origin:right}.header .navbar-toggle span:first-of-type{top:0}.header .navbar-toggle span:last-of-type{bottom:0}.header .navbar-toggle span,.header .navbar-toggle::before{right:0;left:0;height:3px;background:#ff7a00;-webkit-transition:.15s;transition:.15s}.header .navbar-toggle:not(.collapsed)::before{opacity:0}.header .navbar-toggle:not(.collapsed) span:first-of-type{top:-2px;-webkit-transform:rotate(-45deg);transform:rotate(-45deg)}.header .navbar-toggle:not(.collapsed) span:last-of-type{bottom:-2px;-webkit-transform:rotate(45deg);transform:rotate(45deg)}.header--scrolled{position:fixed;top:0;right:0;left:0;z-index:999;background:#132331;-webkit-box-shadow:0 1px 5px rgba(0,0,0,.1);box-shadow:0 1px 5px rgba(0,0,0,.1)}.header--scrolled .main-menu__btn-wrapper .button--order{background:#ff7a00}.auth_mode .header--scrolled{top:34px}.main-menu{position:absolute;top:90px;right:0;left:0;z-index:1;margin:0;padding:0 0 50px;text-align:center;background:#132331;border:0;-webkit-box-shadow:0 13px 13px 5px rgba(112,112,112,.16);box-shadow:0 13px 13px 5px rgba(112,112,112,.16);visibility:visible}.main-menu .nav{margin:0;padding:20px 0 30px}.main-menu .nav li{margin:0 30px;list-style:none}.main-menu .nav a{padding:10px 0;line-height:;color:#fff;text-shadow:none;outline:0;-webkit-transition:color .15s;transition:color .15s}.main-menu__btn-wrapper{padding:0 0 25px}.main-menu__btn-wrapper li{margin:25px auto 0;list-style:none}.main-menu__btn-wrapper li:nth-of-type(n+2) a:hover{background:#ff7a00;border:2px solid #ff7a00}.main-menu__btn-wrapper a{min-width:177px}.main-menu .active a:not(.button),.main-menu .nav a:focus,.main-menu .nav a:hover{color:#ff7a00;background:0 0}.main-menu .active a{color:#ff7a00}.intro{padding:142px 0 40px;color:#fff;background-color:#132331}.intro h1{margin:0;font-weight:700;font-size:36px;line-height:54px}.intro p{width:95%;margin:0 0 23px}.intro p:last-of-type{margin:0 0 72px}.intro .container{display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-orient:vertical;-webkit-box-direction:normal;-ms-flex-direction:column;flex-direction:column;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-align:center;-ms-flex-align:center;align-items:center;text-align:center}.intro .button{margin:0 0 40px}.strengths{padding:92px 0 80px}.strengths .container{position:relative}.strengths h2+p{width:94%;margin:0 auto 33px;text-align:center}.strengths__list{margin:0;padding:0;list-style:none}.strengths__list h3{display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-align:center;-ms-flex-align:center;align-items:center;margin:0 0 5px;padding:0;font-weight:500;font-size:18px;line-height:29px;text-transform:uppercase}.strengths__list h3::before{content:"";margin:0 10px 0 0;background-repeat:no-repeat}.strengths__item{margin:28px 0 0}.strengths__item--terms h3::before{width:42px;height:44px;background-image:url(data:image/svg+xml,%3Csvg%20width%3D%2243%22%20height%3D%2245%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%%2F2000%2Fsvg%22%3E%3Cpath%20d%3D%%%%%%%200%%%%%%%%200%%%%%%%%200%%22%20fill%3D%22%23FF7A00%22%2F%3E%3Cpath%20d%3D%%%%%%%200%%%%%%200%20010%%%%%%200%%%%%%%200%%%%%200%%%22%20fill%3D%22%23FF7A00%22%2F%3E%3Cpath%20d%3D%%%200%%200%%%%200%%%%200%%200%%200%%%%%200%%200%%200%%200%%%%200%%%%200%%200%%%%200%%200%%%200%20000%%200%%200%%%200%%%%%200%%%%200%%%%%%%200%%200%%%%200%%%%200%%%%200%%200%%%%200%%%200%%%%%%%200%%200%%%%%200%%200%%200%%%200%20010%%200%%%%200%%%%%%%%%%%200%%%%%%200%%%%200%%%22%20fill%3D%22%23FF7A00%22%2F%3E%3Cpath%20d%3D%%%200%%200%%200%%%200%%%%%200%%%%200%%%%200%%%%%200%%%200%%%200%%22%20fill%3D%22%23FF7A00%22%2F%3E%3C%2Fsvg%3E)}.strengths__item--rich h3::before{width:35px;height:44px;background-image:url(data:image/svg+xml,%3Csvg%20width%3D%2234%22%20height%3D%2245%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%%2F2000%2Fsvg%22%3E%3Cpath%20d%3D%%%%%%%%%200%%%%%%%%200%%%%%%%%%%%%%%%%22%20fill%3D%22%23FF7A00%22%2F%3E%3Cpath%20d%3D%%%%%200%%%%200%%%200%%%200%%%%200%%%200%%%%200%%%200%%%200%%%%200%%%200%%200%%200%%200z%22%20fill%3D%22%23FF7A00%22%2F%3E%3Cpath%20d%3D%%%200%20000%%%%%%%%200%%%%%200%%%%200%%%%200%%%200%%%200%%200%%%%%200%%%%%%%%%%200%%%200%%%%%200%%%%200%%%%200%%%22%20fill%3D%22%23FF7A00%22%2F%3E%3C%2Fsvg%3E)}.strengths__item--result h3::before{width:33px;height:38px;background-image:url(data:image/svg+xml,%3Csvg%20width%3D%2234%22%20height%3D%2239%22%20fill%3D%22none%22%20xmlns%3D%22http%3A%2F%%2F2000%2Fsvg%22%3E%3Cpath%20d%3D%%%%200%%%200%%%%200%20000%%%200%%%200%%%200%%%200%%%200%%%200%%22%20fill%3D%22%23FF7A00%22%2F%3E%3Cpath%20d%3D%%%%200%%%%200%%200%%200%%200%%%%%200%%%%200%%%%%200%%%%200%%%%%200%%%%%%200%%200%%%200%%200%%%200%20000%%200%%%%%200%%%%%%%200%%%%200%%%%200%%%200%%%%200%%%%200%%%%200%%%%%%200%%200%%200%%200%%%200%%200%%200%%%200%%%200%%200%%200%%%200%%200%%200%%%200%%%%200%%200%%%%200%%200%%%200%%%%%200%%%200%%%200%%200%%%200%%%%200%%200%%200%%%200%20000%%%200%%200%%200%%200%%%%200%%200%%22%20fill%3D%22%23FF7A00%22%2F%3E%3C%2Fsvg%3E)}.strengths--alt ul li p{text-align:center}.strengths--alt ul li p span{color:#ff7a00;font-weight:700;font-size:26px}@media (min-width:768px){.header .container{width:100%;max-width:1170px}}@media screen and (min-width:768px){.header .navbar-toggle{display:block}.main-menu{right:0;left:auto;width:100%;-webkit-box-shadow:0 13px 13px 0 rgba(112,112,112,.16);box-shadow:0 13px 13px 0 rgba(112,112,112,.16)}.main-menu .nav,.main-menu .nav li{float:none}}@media screen and (min-width:992px){.button--secondary{padding:10px 100px}.header{padding:20px 0}.header .navbar-toggle{display:none}.main-menu{position:relative;top:auto;display:-webkit-box!important;display:-ms-flexbox!important;display:flex!important;-webkit-box-pack:justify;-ms-flex-pack:justify;justify-content:space-between;-webkit-box-align:center;-ms-flex-align:center;align-items:center;width:auto;height:auto;margin-left:auto;padding:0;background:0 0;-webkit-box-shadow:none;box-shadow:none}.main-menu .nav{display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-pack:justify;-ms-flex-pack:justify;justify-content:space-between;padding:0}.main-menu .nav li{margin-right:0;margin-left:0}.main-menu .nav li:nth-of-type(1n+2){margin-left:15px;border-top:none}.main-menu .nav a{font-size:16px}.main-menu__btn-wrapper{display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-pack:justify;-ms-flex-pack:justify;justify-content:space-between;-webkit-box-align:center;-ms-flex-align:center;align-items:center;margin:0 0 0 15px;padding:0}.main-menu__btn-wrapper li{margin:0}.main-menu__btn-wrapper li:nth-of-type(n+2){margin-left:10px}.main-menu__btn-wrapper a{min-width:140px}.intro h1{width:66%;max-width:752px;margin:75px 0 27px;font-size:50px;line-height:60px}.intro p{width:51%;max-width:580px}.intro .container{-webkit-box-align:start;-ms-flex-align:start;align-items:flex-start;text-align:left}.intro .container .button-scroll-down{-ms-flex-item-align:center;align-self:center}.strengths{padding:75px 0 85px}.strengths h2{max-width:530px;margin:0 auto 23px}.strengths h2+p{max-width:745px;margin:0 auto 35px}.strengths__list{display:-webkit-box;display:-ms-flexbox;display:flex;-webkit-box-pack:justify;-ms-flex-pack:justify;justify-content:space-between}.strengths__list h3{margin:0 0 10px}.strengths__item{max-width:325px;margin:28px 50px 0 0}.strengths__item:last-of-type{margin:28px 0 0}}@media (min-width:992px){.header img{width:158px;height:66px}.intro .button{margin:-27px 0 0}.intro{margin:106px 0 0;padding:30px 0 50px;color:#fff;background-image:url(/t/spc/img/bg@);background-repeat:no-repeat;background-position:center center;background-size:cover}}@media (min-width:992px) and (-webkit-min-device-pixel-ratio:1.5),(min-width:992px) and (min-resolution:144dpi),(min-width:992px) and (min-resolution:){.intro{background-image:url(/t/spc/img/bg@)}}@media screen and (min-width:1200px){.main-menu .nav li:nth-of-type(1n+2){margin-left:25px}.main-menu .nav a{margin-left:18px}.main-menu__btn-wrapper{margin:0 0 0 25px}.main-menu__btn-wrapper a{min-width:180px}}@media screen and (max-width:12450px){.intro--alt,.intro--blog{margin:0;padding:30px 0 90px;background:#132331}}</style><!-- Favicons -->
  
  
  <link rel="apple-touch-icon" sizes="180x180" href="/t/spc/img/favicons/">

  
  
  <meta name="msapplication-TileColor" content="#da532c">
</head>



<body class="">
<br>

    
<div class="wrapper"><!-- /.header -->
    
<div id="info-block" aria-label="info-block"></div>


            <!-- .intro -->
    <section class="intro intro--blog"></section><!-- /.intro -->
    <!-- .page-content -->
    
<div class="page-content page-content--post">
      
<div class="container">
        <main class="page-content__main page-content__main--post">
          </main>
<div id="blog_detail">
      
<h1 id="90-impromptu-speech-topics-ideas">Lstm units.  num_units: int, The number of units in the LSTM cell.</h1>

  
<div class="post_data">&nbsp;</div>

  
<div class="item">
<h2><br>
</h2>


<p><img alt="AD_4nXcbGJwhp0xu-dYOFjMHURlQmEBciXpX2af6" src="width=" 623="" height="413"></p>


<p>Lstm units.  Because in LSTM, the dimension of inner cell (C_t and C_{t-1} in the graph), output mask (o_t in the graph) and hidden/output state (h_t in the graph) should have the SAME dimension, therefore you output's dimension should be unit Mar 26, 2018 · 前馈神经网络隐层中的节点num_units数目等于LSTM网络每个时间步长的LSTM单元的数量。以下图片应该可以帮助你理解:t-1时刻隐层到下一个隐层的状态tensor是一个向量,向量的维度是隐层神经元的个数。每个num_units,LSTM网络都可以将它看作是一个标准的LSTM单元。 Apr 24, 2021 · 其實這邊的units和MLP內的神經元沒有什麼兩樣,一個unit就是一個LSTM cell,而一個LSTM cell長的樣子如下圖 如果units=2那就是兩個上方的cell左右排(想像成MLP的神經元換成上方的cell),彼此沒有連接,對比關係就是長下面這樣,LSTM的weights在block裡面。 Aug 9, 2019 · The input to LSTM has the shape (batch_size, time_steps, number_features) and units is the number of output units.  LSTM (units = lstm_units), # Dense 层:全连接层,'units' 设置为词汇表的大小,通常用于输出与词汇表大小相同 Sep 23, 2019 · This is the rst document that covers LSTM and its extensions in such great detail.  假设,对于一个一层神经网络,此网络层有64个units,即隐藏神经元个数是64个,激活函数为sigmoid。 May 16, 2019 · LSTMCell也实际上指的是一层LSTM.  This defines the capacity of the model, with more units potentially capturing more complex patterns but also requiring more computational power and data to train effectively.  At last, in the third part, the cell passes the updated information from the current timestamp to the next timestamp.  To make the name num_units more intuitive, you can think of it as the number of hidden units in the LSTM cell, or the number of memory units in the cell.  An LSTM unit is typically composed of a cell and three gates: an input gate, an output gate, [3] and a forget gate.  num_units: int, The number of units in the LSTM cell.  A common problem in deep networks is the &ldquo;vanishing gradient&rdquo; problem, where the gradient gets smaller and smaller with each layer until it is too small to affect the deepest layers.  理论上这个units的值越大, 网络越复杂, 精度更高,计算量更大.  I can't understand what this means.  keras.  Weight Initialization: Use Glorot or He initialization of weights to initialize the initial weights to move faster towards convergence and reduce vanishing/exploding gradient risks.  A time unit is ˝.  Feb 20, 2022 · In practice, the LSTM unit uses recent past information (the short-term memory, H) and new information coming from the outside (the input vector, X) to update the long-term memory (cell state, C). .  What are the units of LSTM cell? Input, Output and Forget gates Sep 2, 2020 · Long-Short-Term Memory Networks and RNNs &mdash; How do they work? First off, LSTMs are a special kind of RNN (Recurrent Neural Network).  We can formulate the parameter numbers in a LSTM layer given that x is the input dimension, h is the number of LSTM units / cells / latent space / output dimension: Nov 13, 2023 · LSTM (units = lstm_units, return_sequences = True), # LSTM 层:第二个 LSTM 层,同样使用 'units' 指定神经元数量。默认情况下,只返回序列的最后一个输出。 tf.  Because of the structure, it outperforms existing systems Gated Recurrent Units (GRUs) A gated recurrent unit (GRU) is basically an LSTM without an output gate, which therefore fully writes the contents from its memory cell to the larger net at each time step.  Each hidden layer has hidden cells, as many as the number of time steps.  Hence, the confusion.  May 1, 2025 · In the second part, the cell tries to learn new information from the input to this cell.  For more information refer to this article: Refer to this link if you needed some visual help: Number of parameters in an LSTM model.  May 20, 2025 · Number of Units: Usually between 50 and 200 units per LSTM layer.  Aug 20, 2018 · The number of units is the size (length) of the internal vector states, h and c of the LSTM.  参考Keras关于LSTM的units参数,还是不理解? 参考文章中说的很明白了,这里我只是再单纯的写一下笔记。 一、普通的神经网络.  Nov 27, 2019 · I believe you are confused.  Sep 9, 2020 · This guide gave a brief introduction to the gating techniques involved in LSTM and implemented the model using the Keras API.  May 28, 2025 · Prerequisites: Recurrent Neural Networks To solve the problem of Vanishing and Exploding Gradients in a Deep Recurrent Neural Network, many variations were developed. 10b) is a hierarchic architecture where a memory cell can reflect information of multiple child cells and multiple descendant cells.  Basically, the unit means the dimension of the inner cells in LSTM.  11.  This one cycle of LSTM is considered a single-time step.  These three parts of an LSTM unit are known as gates.  [4] The cell remembers values over arbitrary time intervals, and the gates regulate the flow of information into and out of the cell.  That is no matter the shape of the input, it is upscaled (by a dense transformation) by the various kernels for the i, f, and o gates.  위 사진의 빨간색 동그라미의 개수가 num_units이다.  따라서 위의 Sep 24, 2018 · Hi and welcome to an Illustrated Guide to Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU).  In fact, LSTMs are one of the about 2 kinds (at present) of Long Short-Term Memory layer - Hochreiter 1997. x API.  It is comprised of multiple LSTM layers with multiple hidden units. Oct 24, 2016 · Most LSTM/RNN diagrams just show the hidden cells but never the units of those cells.  Each line you have above is an LSTm layer and each lstm layer has several cells ( each cell correspondingto a time step) For example the line below shows one lstm layer which contains 256 lstm cells in that layer.  units: 正整数,输出空间的维度。; activation: 要使用的激活函数。默认值:双曲正切 (tanh)。如果传入 None,则不应用激活函数(即&ldquo;线性&rdquo;激活:a(x) = x)。 Overview; LogicalDevice; LogicalDeviceConfiguration; PhysicalDevice; experimental_connect_to_cluster; experimental_connect_to_host; experimental_functions_run_eagerly May 1, 2024 · hidden_size: The number of LSTM units in the hidden layer, which is set to 256.  The number of units in each layer of the stack can vary.  One of the most famous of them is the Long Short Term Memory Network(LSTM). g.  Jun 19, 2016 · Tensorflow&rsquo;s num_units is the size of the LSTM&rsquo;s hidden state (which is also the size of the output if no projection is used).  And further, each hidden cell is made up of multiple hidden units, like in the diagram below.  A memory cell is a composite unit, built from simpler nodes in a specific connectivity pattern, with the novel inclusion of multiplicative nodes. 5) can solve overfitting.  So, in the example I gave you, there are 2 time steps and 1 input feature whereas the output is 100.  2 Notation In this article we use the following notation: The learning rate of the network is .  这里的units=100指的是这个LSTM单元内的隐藏层尺寸.  LSTM Hyperparameter Tuning.  Based on available runtime hardware and constraints, this layer will choose different implementations (cuDNN-based or backend-native) to maximize the performance.  The set of units of the network is N, with generic (unless stated otherwise) units u Jun 29, 2018 · keras中LSTM的units是什么意思. , 0. The amount of lstm layers and lstm cells in each layer is subject to experimentation.  keras LSTM의 인풋 중 하나인 num_units는 hidden state (output)의 차원이다.  Tree-LSTM (Fig.  A simple LSTM model only has a single hidden LSTM layer while a stacked LSTM model (needed for advanced applications) has multiple LSTM hidden layers.  The best range can be found via cross validation.  For example in translate.  layers. 2 to 0.  参数.  Nov 1, 2019 · LSTM(units,input_shape(3,1)),这里的units指的是cell的个数么?如果是,按照LSTM原理这些cell之间应该是无连接的,那units的多少其意义是什么呢,是不是相当于MLP里面对应隐层的神经元个数,只是为了扩展系统的输出能力? 每个LSTM单元格(存在于特定时间步)将输入x并形成隐藏状态向量a,这个隐藏单元向量的长度称为LSTM(Keras)中的units。 需要记住的是,该代码只创建了一个RNN单元格。 The LSTM model introduces an intermediate type of storage via the memory cell.  Now you know how LSTM works, and the next guide will introduce gated recurrent units, or GRU, a modified version of LSTM that uses fewer parameters and output state.  아래 사진은 한개의 cell에 대한 설명이다.  May 31, 2017 · You can check this question for further information, although it is based on Keras-1. py from Tensorflow it can be configured to 1024, 512 or virtually any number.  In concept, an LSTM recurrent unit tries to &quot;remember&quot; al Since there are 4 gates in the LSTM unit which have exactly the same dense layer architecture, there will be = 4 &times; 12 = 48 parameters.  RnnCell.  如下图所示,每个单元内会有三个门,对应了4个激活函数(3个 sigmoid,1个tanh), 即有4个神经元数量为100的前馈网络层.  Dropout Rate: Dropout (e.  I&rsquo;m Michael, and I&rsquo;m a Machine Learning Engineer in the AI voice assistant space.  Initial times of an epoch are denoted by t0and nal times by t.  Look at this awesome post for more clarity Apr 9, 2019 · Stacked LSTM or Deep LSTM is a particular type of hierarchical LSTM.  Here are a few ideas to keep in mind when manually optimizing hyperparameters for RNNs: Apr 13, 2022 · LSTM unit (num_units), cell? LSTM cell은 3개의 게이트로 구성되어있고, 이를 통해서 기존 RNN보다 긴 시퀀스를 학습할 수 있게된다.  Apr 7, 2020 · From Tensorflow code: Tensorflow.  Dec 18, 2024 · This article demystifies the configuration of stateful LSTM layers in Keras, explaining what it means to have N units and how it impacts your recurrent neural network model.  </p>
</div>
</div>
</div>
</div>
</div>
<div class="container">
<div class="footer__bottom">
<div class="container"><!-- /.ownership-statement -->
          
<div class="footer__info">
            
<p class="footer__copy">&copy; Copyright 2007-2025 </p>

            <!--noindex-->
            <!-- .terms -->
            
<ul class="terms footer__terms">

              <li>
                Terms of Use
              </li>

              <li>
                Privacy Policy
              </li>

            
</ul>
<!-- /.terms -->
            <!--/noindex-->
          </div>
       
        </div>

      </div>

    </div>

  <!-- /.footer -->
  <!-- .notice -->
  
<div class="notice" style="display: none;">
    
<p class="notice__text">Dear visitor, our website has been recently
updated. You can contact us if you have any concerns regarding the new
version of the website. Your feedback is greatly appreciated.</p>

    <button class="notice__close" aria-label="Close alert"></button>
  </div>
<!-- /.notice -->
  <button class="button-scroll-up" aria-label="button-scroll"></button>







</body>
</html>