Current Path : /usr/local/go/src/cmd/compile/internal/walk/ |
Current File : //usr/local/go/src/cmd/compile/internal/walk/range.go |
// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package walk import ( "unicode/utf8" "cmd/compile/internal/base" "cmd/compile/internal/ir" "cmd/compile/internal/reflectdata" "cmd/compile/internal/ssagen" "cmd/compile/internal/typecheck" "cmd/compile/internal/types" "cmd/internal/src" "cmd/internal/sys" ) func cheapComputableIndex(width int64) bool { switch ssagen.Arch.LinkArch.Family { // MIPS does not have R+R addressing // Arm64 may lack ability to generate this code in our assembler, // but the architecture supports it. case sys.PPC64, sys.S390X: return width == 1 case sys.AMD64, sys.I386, sys.ARM64, sys.ARM: switch width { case 1, 2, 4, 8: return true } } return false } // walkRange transforms various forms of ORANGE into // simpler forms. The result must be assigned back to n. // Node n may also be modified in place, and may also be // the returned node. func walkRange(nrange *ir.RangeStmt) ir.Node { base.Assert(!nrange.DistinctVars) // Should all be rewritten before escape analysis if isMapClear(nrange) { return mapRangeClear(nrange) } nfor := ir.NewForStmt(nrange.Pos(), nil, nil, nil, nil, nrange.DistinctVars) nfor.SetInit(nrange.Init()) nfor.Label = nrange.Label // variable name conventions: // ohv1, hv1, hv2: hidden (old) val 1, 2 // ha, hit: hidden aggregate, iterator // hn, hp: hidden len, pointer // hb: hidden bool // a, v1, v2: not hidden aggregate, val 1, 2 a := nrange.X t := a.Type() lno := ir.SetPos(a) v1, v2 := nrange.Key, nrange.Value if ir.IsBlank(v2) { v2 = nil } if ir.IsBlank(v1) && v2 == nil { v1 = nil } if v1 == nil && v2 != nil { base.Fatalf("walkRange: v2 != nil while v1 == nil") } var body []ir.Node var init []ir.Node switch t.Kind() { default: base.Fatalf("walkRange") case types.TARRAY, types.TSLICE, types.TPTR: // TPTR is pointer-to-array if nn := arrayRangeClear(nrange, v1, v2, a); nn != nil { base.Pos = lno return nn } // Element type of the iteration var elem *types.Type switch t.Kind() { case types.TSLICE, types.TARRAY: elem = t.Elem() case types.TPTR: elem = t.Elem().Elem() } // order.stmt arranged for a copy of the array/slice variable if needed. ha := a hv1 := typecheck.Temp(types.Types[types.TINT]) hn := typecheck.Temp(types.Types[types.TINT]) init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) init = append(init, ir.NewAssignStmt(base.Pos, hn, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha))) nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, hn) nfor.Post = ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(base.Pos, 1))) // for range ha { body } if v1 == nil { break } // for v1 := range ha { body } if v2 == nil { body = []ir.Node{rangeAssign(nrange, hv1)} break } // for v1, v2 := range ha { body } if cheapComputableIndex(elem.Size()) { // v1, v2 = hv1, ha[hv1] tmp := ir.NewIndexExpr(base.Pos, ha, hv1) tmp.SetBounded(true) body = []ir.Node{rangeAssign2(nrange, hv1, tmp)} break } // Slice to iterate over var hs ir.Node if t.IsSlice() { hs = ha } else { var arr ir.Node if t.IsPtr() { arr = ha } else { arr = typecheck.NodAddr(ha) arr.SetType(t.PtrTo()) arr.SetTypecheck(1) } hs = ir.NewSliceExpr(base.Pos, ir.OSLICEARR, arr, nil, nil, nil) // old typechecker doesn't know OSLICEARR, so we set types explicitly hs.SetType(types.NewSlice(elem)) hs.SetTypecheck(1) } // We use a "pointer" to keep track of where we are in the backing array // of the slice hs. This pointer starts at hs.ptr and gets incremented // by the element size each time through the loop. // // It's tricky, though, as on the last iteration this pointer gets // incremented to point past the end of the backing array. We can't // let the garbage collector see that final out-of-bounds pointer. // // To avoid this, we keep the "pointer" alternately in 2 variables, one // pointer typed and one uintptr typed. Most of the time it lives in the // regular pointer variable, but when it might be out of bounds (after it // has been incremented, but before the loop condition has been checked) // it lives briefly in the uintptr variable. // // hp contains the pointer version (of type *T, where T is the element type). // It is guaranteed to always be in range, keeps the backing store alive, // and is updated on stack copies. If a GC occurs when this function is // suspended at any safepoint, this variable ensures correct operation. // // hu contains the equivalent uintptr version. It may point past the // end, but doesn't keep the backing store alive and doesn't get updated // on a stack copy. If a GC occurs while this function is on the top of // the stack, then the last frame is scanned conservatively and hu will // act as a reference to the backing array to ensure it is not collected. // // The "pointer" we're moving across the backing array lives in one // or the other of hp and hu as the loop proceeds. // // hp is live during most of the body of the loop. But it isn't live // at the very top of the loop, when we haven't checked i<n yet, and // it could point off the end of the backing store. // hu is live only at the very top and very bottom of the loop. // In particular, only when it cannot possibly be live across a call. // // So we do // hu = uintptr(unsafe.Pointer(hs.ptr)) // for i := 0; i < hs.len; i++ { // hp = (*T)(unsafe.Pointer(hu)) // v1, v2 = i, *hp // ... body of loop ... // hu = uintptr(unsafe.Pointer(hp)) + elemsize // } // // Between the assignments to hu and the assignment back to hp, there // must not be any calls. // Pointer to current iteration position. Start on entry to the loop // with the pointer in hu. ptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, hs) ptr.SetBounded(true) huVal := ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], ptr) huVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUINTPTR], huVal) hu := typecheck.Temp(types.Types[types.TUINTPTR]) init = append(init, ir.NewAssignStmt(base.Pos, hu, huVal)) // Convert hu to hp at the top of the loop (after the condition has been checked). hpVal := ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], hu) hpVal.SetCheckPtr(true) // disable checkptr on this conversion hpVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, elem.PtrTo(), hpVal) hp := typecheck.Temp(elem.PtrTo()) body = append(body, ir.NewAssignStmt(base.Pos, hp, hpVal)) // Assign variables on the LHS of the range statement. Use *hp to get the element. e := ir.NewStarExpr(base.Pos, hp) e.SetBounded(true) a := rangeAssign2(nrange, hv1, e) body = append(body, a) // Advance pointer for next iteration of the loop. // This reads from hp and writes to hu. huVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUNSAFEPTR], hp) huVal = ir.NewConvExpr(base.Pos, ir.OCONVNOP, types.Types[types.TUINTPTR], huVal) as := ir.NewAssignStmt(base.Pos, hu, ir.NewBinaryExpr(base.Pos, ir.OADD, huVal, ir.NewInt(base.Pos, elem.Size()))) nfor.Post = ir.NewBlockStmt(base.Pos, []ir.Node{nfor.Post, as}) case types.TMAP: // order.stmt allocated the iterator for us. // we only use a once, so no copy needed. ha := a hit := nrange.Prealloc th := hit.Type() // depends on layout of iterator struct. // See cmd/compile/internal/reflectdata/reflect.go:MapIterType keysym := th.Field(0).Sym elemsym := th.Field(1).Sym // ditto fn := typecheck.LookupRuntime("mapiterinit") fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem(), th) init = append(init, mkcallstmt1(fn, reflectdata.RangeMapRType(base.Pos, nrange), ha, typecheck.NodAddr(hit))) nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym), typecheck.NodNil()) fn = typecheck.LookupRuntime("mapiternext") fn = typecheck.SubstArgTypes(fn, th) nfor.Post = mkcallstmt1(fn, typecheck.NodAddr(hit)) key := ir.NewStarExpr(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, keysym)) if v1 == nil { body = nil } else if v2 == nil { body = []ir.Node{rangeAssign(nrange, key)} } else { elem := ir.NewStarExpr(base.Pos, ir.NewSelectorExpr(base.Pos, ir.ODOT, hit, elemsym)) body = []ir.Node{rangeAssign2(nrange, key, elem)} } case types.TCHAN: // order.stmt arranged for a copy of the channel variable. ha := a hv1 := typecheck.Temp(t.Elem()) hv1.SetTypecheck(1) if t.Elem().HasPointers() { init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) } hb := typecheck.Temp(types.Types[types.TBOOL]) nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, hb, ir.NewBool(base.Pos, false)) lhs := []ir.Node{hv1, hb} rhs := []ir.Node{ir.NewUnaryExpr(base.Pos, ir.ORECV, ha)} a := ir.NewAssignListStmt(base.Pos, ir.OAS2RECV, lhs, rhs) a.SetTypecheck(1) nfor.Cond = ir.InitExpr([]ir.Node{a}, nfor.Cond) if v1 == nil { body = nil } else { body = []ir.Node{rangeAssign(nrange, hv1)} } // Zero hv1. This prevents hv1 from being the sole, inaccessible // reference to an otherwise GC-able value during the next channel receive. // See issue 15281. body = append(body, ir.NewAssignStmt(base.Pos, hv1, nil)) case types.TSTRING: // Transform string range statements like "for v1, v2 = range a" into // // ha := a // for hv1 := 0; hv1 < len(ha); { // hv1t := hv1 // hv2 := rune(ha[hv1]) // if hv2 < utf8.RuneSelf { // hv1++ // } else { // hv2, hv1 = decoderune(ha, hv1) // } // v1, v2 = hv1t, hv2 // // original body // } // order.stmt arranged for a copy of the string variable. ha := a hv1 := typecheck.Temp(types.Types[types.TINT]) hv1t := typecheck.Temp(types.Types[types.TINT]) hv2 := typecheck.Temp(types.RuneType) // hv1 := 0 init = append(init, ir.NewAssignStmt(base.Pos, hv1, nil)) // hv1 < len(ha) nfor.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv1, ir.NewUnaryExpr(base.Pos, ir.OLEN, ha)) if v1 != nil { // hv1t = hv1 body = append(body, ir.NewAssignStmt(base.Pos, hv1t, hv1)) } // hv2 := rune(ha[hv1]) nind := ir.NewIndexExpr(base.Pos, ha, hv1) nind.SetBounded(true) body = append(body, ir.NewAssignStmt(base.Pos, hv2, typecheck.Conv(nind, types.RuneType))) // if hv2 < utf8.RuneSelf nif := ir.NewIfStmt(base.Pos, nil, nil, nil) nif.Cond = ir.NewBinaryExpr(base.Pos, ir.OLT, hv2, ir.NewInt(base.Pos, utf8.RuneSelf)) // hv1++ nif.Body = []ir.Node{ir.NewAssignStmt(base.Pos, hv1, ir.NewBinaryExpr(base.Pos, ir.OADD, hv1, ir.NewInt(base.Pos, 1)))} // } else { // hv2, hv1 = decoderune(ha, hv1) fn := typecheck.LookupRuntime("decoderune") call := mkcall1(fn, fn.Type().Results(), &nif.Else, ha, hv1) a := ir.NewAssignListStmt(base.Pos, ir.OAS2, []ir.Node{hv2, hv1}, []ir.Node{call}) nif.Else.Append(a) body = append(body, nif) if v1 != nil { if v2 != nil { // v1, v2 = hv1t, hv2 body = append(body, rangeAssign2(nrange, hv1t, hv2)) } else { // v1 = hv1t body = append(body, rangeAssign(nrange, hv1t)) } } } typecheck.Stmts(init) nfor.PtrInit().Append(init...) typecheck.Stmts(nfor.Cond.Init()) nfor.Cond = typecheck.Expr(nfor.Cond) nfor.Cond = typecheck.DefaultLit(nfor.Cond, nil) nfor.Post = typecheck.Stmt(nfor.Post) typecheck.Stmts(body) nfor.Body.Append(body...) nfor.Body.Append(nrange.Body...) var n ir.Node = nfor n = walkStmt(n) base.Pos = lno return n } // rangeAssign returns "n.Key = key". func rangeAssign(n *ir.RangeStmt, key ir.Node) ir.Node { key = rangeConvert(n, n.Key.Type(), key, n.KeyTypeWord, n.KeySrcRType) return ir.NewAssignStmt(n.Pos(), n.Key, key) } // rangeAssign2 returns "n.Key, n.Value = key, value". func rangeAssign2(n *ir.RangeStmt, key, value ir.Node) ir.Node { // Use OAS2 to correctly handle assignments // of the form "v1, a[v1] = range". key = rangeConvert(n, n.Key.Type(), key, n.KeyTypeWord, n.KeySrcRType) value = rangeConvert(n, n.Value.Type(), value, n.ValueTypeWord, n.ValueSrcRType) return ir.NewAssignListStmt(n.Pos(), ir.OAS2, []ir.Node{n.Key, n.Value}, []ir.Node{key, value}) } // rangeConvert returns src, converted to dst if necessary. If a // conversion is necessary, then typeWord and srcRType are copied to // their respective ConvExpr fields. func rangeConvert(nrange *ir.RangeStmt, dst *types.Type, src, typeWord, srcRType ir.Node) ir.Node { src = typecheck.Expr(src) if dst.Kind() == types.TBLANK || types.Identical(dst, src.Type()) { return src } n := ir.NewConvExpr(nrange.Pos(), ir.OCONV, dst, src) n.TypeWord = typeWord n.SrcRType = srcRType return typecheck.Expr(n) } // isMapClear checks if n is of the form: // // for k := range m { // delete(m, k) // } // // where == for keys of map m is reflexive. func isMapClear(n *ir.RangeStmt) bool { if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting { return false } t := n.X.Type() if n.Op() != ir.ORANGE || t.Kind() != types.TMAP || n.Key == nil || n.Value != nil { return false } k := n.Key // Require k to be a new variable name. if !ir.DeclaredBy(k, n) { return false } if len(n.Body) != 1 { return false } stmt := n.Body[0] // only stmt in body if stmt == nil || stmt.Op() != ir.ODELETE { return false } m := n.X if delete := stmt.(*ir.CallExpr); !ir.SameSafeExpr(delete.Args[0], m) || !ir.SameSafeExpr(delete.Args[1], k) { return false } // Keys where equality is not reflexive can not be deleted from maps. if !types.IsReflexive(t.Key()) { return false } return true } // mapRangeClear constructs a call to runtime.mapclear for the map range idiom. func mapRangeClear(nrange *ir.RangeStmt) ir.Node { m := nrange.X origPos := ir.SetPos(m) defer func() { base.Pos = origPos }() return mapClear(m, reflectdata.RangeMapRType(base.Pos, nrange)) } // mapClear constructs a call to runtime.mapclear for the map m. func mapClear(m, rtyp ir.Node) ir.Node { t := m.Type() // instantiate mapclear(typ *type, hmap map[any]any) fn := typecheck.LookupRuntime("mapclear") fn = typecheck.SubstArgTypes(fn, t.Key(), t.Elem()) n := mkcallstmt1(fn, rtyp, m) return walkStmt(typecheck.Stmt(n)) } // Lower n into runtime·memclr if possible, for // fast zeroing of slices and arrays (issue 5373). // Look for instances of // // for i := range a { // a[i] = zero // } // // in which the evaluation of a is side-effect-free. // // Parameters are as in walkRange: "for v1, v2 = range a". func arrayRangeClear(loop *ir.RangeStmt, v1, v2, a ir.Node) ir.Node { if base.Flag.N != 0 || base.Flag.Cfg.Instrumenting { return nil } if v1 == nil || v2 != nil { return nil } if len(loop.Body) != 1 || loop.Body[0] == nil { return nil } stmt1 := loop.Body[0] // only stmt in body if stmt1.Op() != ir.OAS { return nil } stmt := stmt1.(*ir.AssignStmt) if stmt.X.Op() != ir.OINDEX { return nil } lhs := stmt.X.(*ir.IndexExpr) x := lhs.X if a.Type().IsPtr() && a.Type().Elem().IsArray() { if s, ok := x.(*ir.StarExpr); ok && s.Op() == ir.ODEREF { x = s.X } } if !ir.SameSafeExpr(x, a) || !ir.SameSafeExpr(lhs.Index, v1) { return nil } if !ir.IsZero(stmt.Y) { return nil } return arrayClear(stmt.Pos(), a, loop) } // arrayClear constructs a call to runtime.memclr for fast zeroing of slices and arrays. func arrayClear(wbPos src.XPos, a ir.Node, nrange *ir.RangeStmt) ir.Node { elemsize := typecheck.RangeExprType(a.Type()).Elem().Size() if elemsize <= 0 { return nil } // Convert to // if len(a) != 0 { // hp = &a[0] // hn = len(a)*sizeof(elem(a)) // memclr{NoHeap,Has}Pointers(hp, hn) // i = len(a) - 1 // } n := ir.NewIfStmt(base.Pos, nil, nil, nil) n.Cond = ir.NewBinaryExpr(base.Pos, ir.ONE, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(base.Pos, 0)) // hp = &a[0] hp := typecheck.Temp(types.Types[types.TUNSAFEPTR]) ix := ir.NewIndexExpr(base.Pos, a, ir.NewInt(base.Pos, 0)) ix.SetBounded(true) addr := typecheck.ConvNop(typecheck.NodAddr(ix), types.Types[types.TUNSAFEPTR]) n.Body.Append(ir.NewAssignStmt(base.Pos, hp, addr)) // hn = len(a) * sizeof(elem(a)) hn := typecheck.Temp(types.Types[types.TUINTPTR]) mul := typecheck.Conv(ir.NewBinaryExpr(base.Pos, ir.OMUL, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(base.Pos, elemsize)), types.Types[types.TUINTPTR]) n.Body.Append(ir.NewAssignStmt(base.Pos, hn, mul)) var fn ir.Node if a.Type().Elem().HasPointers() { // memclrHasPointers(hp, hn) ir.CurFunc.SetWBPos(wbPos) fn = mkcallstmt("memclrHasPointers", hp, hn) } else { // memclrNoHeapPointers(hp, hn) fn = mkcallstmt("memclrNoHeapPointers", hp, hn) } n.Body.Append(fn) // For array range clear, also set "i = len(a) - 1" if nrange != nil { idx := ir.NewAssignStmt(base.Pos, nrange.Key, ir.NewBinaryExpr(base.Pos, ir.OSUB, ir.NewUnaryExpr(base.Pos, ir.OLEN, a), ir.NewInt(base.Pos, 1))) n.Body.Append(idx) } n.Cond = typecheck.Expr(n.Cond) n.Cond = typecheck.DefaultLit(n.Cond, nil) typecheck.Stmts(n.Body) return walkStmt(n) } // addptr returns (*T)(uintptr(p) + n). func addptr(p ir.Node, n int64) ir.Node { t := p.Type() p = ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, p) p.SetType(types.Types[types.TUINTPTR]) p = ir.NewBinaryExpr(base.Pos, ir.OADD, p, ir.NewInt(base.Pos, n)) p = ir.NewConvExpr(base.Pos, ir.OCONVNOP, nil, p) p.SetType(t) return p }